5th World Congress On Sleep Medicine

Study of thermal properties, toxicity emissions and rebreathing avoidance as exogenous stressors of Sudden Infant Dead Syndrome in baby mattresses. Design recommendations.

Authors

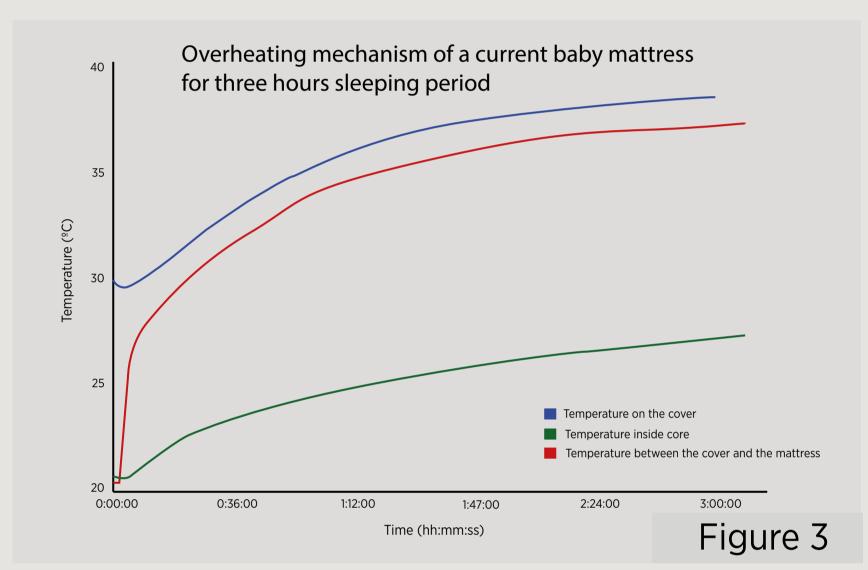
Zamora. T	Phd Innovation Dep. European Sleep Care Institute, Spain.
Dr. Pin G.	Babies and Children Comitee. European Sleep Care Institute, Spain.
Barberá V.	General Director Elastic Confort s.l., Spain.
Dr. Morell, M.	Babies and Children Comitee. European Sleep Care Institute, Spain.
Aznar, M.	Oekotex Tech. Lab. (AITEX), Spain.
Huertas, P.	Thermal Comfort Consultant Researcher (IBV), Spain.

Introduction

Sudden Infant Death Syndrome is the highest cause of death in the post-neonatal period. According to the Triple Risk Model (Kinney et al, 2009), SIDS results when three factors simultaneously influence the infant: (a) an underlying vulnerability in the infant, (b) a critical developmental period, and (c) an exogenous stressor.

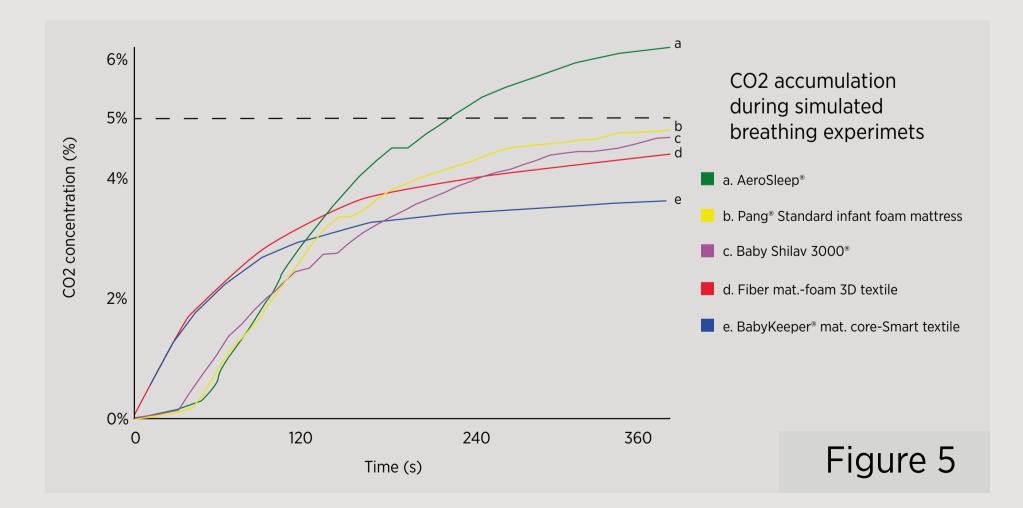
Considering exogenous stressor evidences, the objectives were:

- to determine the thermal behavior of current baby mattresses
- to test improvements reached by new materials, to confirm the viability to design harmfulness mattresses according to Oeko-tex
- to confirm that rebreathing of exhaled air is above the safety threshold concluding with a design criteria including the properties mentioned above.


Thermal test

It was used a thermal mannequin ST-2 made by Measurement Technology Northwest (fig. 2 & 3).

Test specimens were:


- 1. Spring mat.-foam-textile cover sewed
- **2.** Fiber mat.-foam 3D textile
- **3.** PU mat. core low density PU-PVC cover
- 4. PU Mat. core with low density PU
- 5. Babykeeper[®] mat. core
- 6. Babykeeper[®] mat. core-3D foam textile
- 7. Babykeeper[®] mat. core-Smart textile (*fig.* 1)

Toxicity and Rebreathing test

Oekotex test was performed by AITEX following label standards. To study rebreathing avoidance an infant mannequin was simulated as a head box which was placed with its open face on the mattress and connected with tubing to a gas reservoir filled with 5% CO2. Also it was used 50 cc syringe with two one-way valves which simulates infant breathing. Finally a CO2 analyzer was placed in the head box (tested by Bar-Yishay Phd). Both tests were executed to confirm liability of new materials: spec. 2 and 7.

40,50 Thermal Test Results 1. Spring mat.- foam textile cover sewed ୍କି <u>3</u>9,50 2. Fiber mat.-foam 3D textile 3. PU mat. core low density PU-PVC cover 4. PU mat. core with low density PU ₫ 38.50 5. BabyKeeper[®] mat. core 6. BabyKeeper[®] mat. core-3D foam textil 37,50 7. BabyKeeper[®] mat. core-Smart textil 2:50:00 2:50:00 3:00:00 Figure 4 Time (s)

Thermal Test Results (Test Specimen (Temperature average last 30min, Thermal Resistance Rt (C.m^2/W)) (fig. 4)

- Spring mat.-foam-textile cover sewed (38.4°C, 3.2)
- Fiber mat.-foam 3D textile (40.1°C, 3.34)
- PU mat. core low density PU-PVC cover (38.4°C, 3.2)
- PU Mat. core with low density PU (38.1°C, 3.17)
- Babykeeper[®] mat. core (37.2^oC, 3.1)
- Babykeeper[®] mat. core-3D foam textile (38.5^oC, 3.20)
- Babykeeper[®] mat. core-Smart textile (38.3^oC, 3.19)

Oekotex: Not toxic class1.

Rebreathing results (specimen (Max CO2(%),Time to reach plateau (sec)) (*fig. 5*):

- 2. Fiber mat.-foam 3D textile (4.36±0.11, 324±1.4)
- 7. Babykeeper[®] mat. core-Smart textile. (3.35±0.14, 298±19)

Results

* According to state of the art (Bar-Yishay et al., 2011), 3 current mattresses test results are (including Aerosleep which is a product that adverts better airflow properties): Pang[®] (5.20±0.04) BabyShilav 3000[®] (4.51±0.1), AeroSleep[®](6.25±0.28).

In this sense both systems had a significantly faster rate of CO2 elimination (4-5 minutes) compared to 15 min to 18.7 min. for other mattresses and **max CO2<5% (toxic limit)** (Bar-Yishay et al, 2011).

Conclusion

As a conclusion design recommendation for baby matresses:

- Thermal resistance (RT) < 3.2 °Cm²/W
- Oekotex label class 1 for product and components
- Rebreathing test simulation (fixing CO2: concentration at 5%): CO2< 4%(steady state situation non-toxic) and CO2 elimination rate <400 sec. (Bar-Yishay et al, 2011)

www.escinstitute.com

